45 research outputs found

    Mejora de la seguridad y la privacidad de los sistemas biométricos

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Escuela Politécnica Superior, Departamento de Tecnología Electrónica y de las Comunicaciones. Fecha de lectura: 02-06-2016This Thesis was printed with the financial support from EPS-UAM and the Biometric Recognition Group-ATVS

    Efficient software attack to multimodal biometric systems and its application to face and iris fusion

    Full text link
    This is the author’s version of a work that was accepted for publication in Pattern Recognition Letters. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Pattern Recognition Letters 36, (2014) DOI: 10.1016/j.patrec.2013.04.029In certain applications based on multimodal interaction it may be crucial to determine not only what the user is doing (commands), but who is doing it, in order to prevent fraudulent use of the system. The biometric technology, and particularly the multimodal biometric systems, represent a highly efficient automatic recognition solution for this type of applications. Although multimodal biometric systems have been traditionally regarded as more secure than unimodal systems, their vulnerabilities to spoofing attacks have been recently shown. New fusion techniques have been proposed and their performance thoroughly analysed in an attempt to increase the robustness of multimodal systems to these spoofing attacks. However, the vulnerabilities of multimodal approaches to software-based attacks still remain unexplored. In this work we present the first software attack against multimodal biometric systems. Its performance is tested against a multimodal system based on face and iris, showing the vulnerabilities of the system to this new type of threat. Score quantization is afterwards studied as a possible countermeasure, managing to cancel the effects of the proposed attacking methodology under certain scenarios.This work has been partially supported by projects Contexts (S2009/TIC-1485) from CAM, Bio-Challenge (TEC2009-11186) and Bio-Shield (TEC2012-34881) from Spanish MINECO, TABULA RASA (FP7-ICT-257289) and BEAT (FP7-SEC-284989) from EU, and Cátedra UAM-Telefónica

    Enhanced on-line signature verification based on skilled forgery detection using Sigma-LogNormal Features

    Full text link
    Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. M. Gomez-Barrero, J. Galbally, J. Fierrez, and J. Ortega-Garcia, "Enhanced on-line signature verification based on skilled forgery detection using Sigma-LogNormal Features", in International Conference on Biometrics, ICB 2015, 501-506One of the biggest challenges in on-line signature verification is the detection of skilled forgeries. In this paper, we propose a novel scheme, based on the Kinematic Theory of rapid human movements and its associated Sigma LogNormal model, to improve the performance of on-line signature verification systems. The approach combines the high performance of DTW-based systems in verification tasks, with the high potential for skilled forgery detection of the Kinematic Theory of rapid human movements. Experiments were carried out on the publicly available BiosecurID multimodal database, comprising 400 subjects. Results show that the performance of the DTW-based system improves for both skilled and random forgeries.This work has been partially supported by project Bio- Shield (TEC2012-34881) from Spanish MINECO, BEAT (FP7-SEC-284989) from EU, Cátedra UAM-Telefónica, CECABANK, and grant RGPIN-915 from NSERC Canada. M. G.-B. is supported by a FPU Fellowship from Spanish MECD

    Multimodal biometric fusion: A study on vulnerabilities to indirect attacks

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-41827-3_45Proceedings of 18th Iberoamerican Congress, CIARP 2013, Havana, CubaFusion of several biometric traits has traditionally been regarded as more secure than unimodal recognition systems. However, recent research works have proven that this is not always the case. In the present article we analyse the performance and robustness of several fusion schemes to indirect attacks. Experiments are carried out on a multimodal system based on face and iris, a user-friendly trait combination, over the publicly available multimodal Biosecure DB. The tested system proves to have a high vulnerability to the attack regardless of the fusion rule considered. However, the experiments prove that not necessarily the best fusion rule in terms of performance is the most robust to the type of attack considered.This work has been partially supported by projects Contexts (S2009/TIC-1485) from CAM, Bio-Challenge (TEC2009-11186) and Bio-Shield (TEC2012-34881) from Spanish MINECO, TABULA RASA (FP7-ICT-257289) and BEAT (FP7-SEC-284989) from EU, and Cátedra UAM-Telefónica

    Sobre cómo varían las firmas manuscritas con el tiempo: una modelización Sigma Lognormal

    Full text link
    Comunicación presentada en las Jornadas de Reconocimiento Biométrico de Personas (JRBP 2013)En el presente trabajo se analiza la variación de las firmas dinámicas con el tiempo usando la Teoría Cinemática, siguiendo un protocolo general, consistente y completamente reproducible. Los experimentos se llevan a cabo sobre una nueva base de datos a largo plazo, capturada, bajo condiciones casi idénticas, en 6 sesiones uniformemente distribuidas durante un periodo de 15 meses. Las firmas se han representado con el modelo Sigma Lonormal, el cual tiene en cuenta los efectos del envejecimiento del cuerpo más relacionados con la escritura, como los tiempos de respuesta neuromusculares. Tras estudiar la evolución de las firmas con el tiempo, se ha llevado a cabo un análisis de distintos grupos de edad basado en los parámetros del modelo.Este trabajo ha sido parcialmente nanciado por los proyectos Contexts (S2009/TIC-1485) de la CAM, Bio-Challenge (TEC2009-11186) y Bio-Shield (TEC2012-34881) del MINECO, Guardia Civil y C atedra UAM-Telef onica

    Inverse biometrics: A case study in hand geometry authentication

    Full text link
    Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. M. Gómez-Barrero, J. Galbally, J. Fiérrez and J. Ortega-Garcia, "Inverse biometrics: A case study in hand geometry authentication" in 21st International Conference on Pattern Recognition (ICPR), Tsukuba (Japan), 2012, 1281 - 1284Recently, a considerable amount of research has been focused on inverse biometrics, that is, regenerating the original biometric sample from its template. In this work, the first reconstruction approach to recover hand geometry samples from their feature vectors is proposed. Experiments are carried out on the publicly available GPDS Hand DB, where the method has shown a remarkable performance, after reconstructing a very high percentage of the hands included in the dataset. Furthermore, the proposed technique is general, being able to successfully reproduce the original hand shape sample regardless of the information and format of the template used.This work has been partially supported by projects Contexts (S2009/TIC-1485) from CAM, TEC2009- 11186 and TEC2009-14123 from Spanish MINECO, TABULA RASA (FP7-ICT-257289) and BEAT (FP7-SEC-284989) from EU, and Cátedra UAM-Telefónica

    Towards cancelable multi-biometrics based on bloom filters: a case study on feature level fusion of face and iris

    Full text link
    Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. C. Rathgeb, M. Gomez-Barrero, C. Busch, J. Galbally, and J. Fierrez, "Towards cancelable multi-biometrics based on bloom filters: a case study on feature level fusion of face and iris", in International Workshop on Biometrics and Forensics (IWBF), 2015, p. 1-6In this work we propose a generic framework for generating an irreversible representation of multiple biometric templates based on adaptive Bloom filters. The presented technique enables a feature level fusion of different biometrics (face and iris) to a single protected template, improving privacy protection compared to the corresponding systems based on a single biometric trait. At the same time, a significant gain in biometric performance is achieved, confirming the sound- ness of the proposed technique.This work has been partially supported by projects Bio-Shield (TEC2012-34881) from Spanish MINECO, FIDELITY (FP7- SEC-284862) and BEAT (FP7-SEC-284989) from EU, the Center for Advanced Security Research Darmstadt (CASED) and C´atedra UAM-Telef´onica. Marta Gomez-Barrero is supported by a FPU Fellowship from Spanish MECD

    Variations of handwritten signatures with time: A sigma-lognormal analysis

    Full text link
    Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. M. Gómez-Barrero, J. Galbally, J. Fiérrez, J. Ortega-García, "Variations of handwritten signatures with time: A sigma-lognormal analysis" in 6th International Conference on Biometrics (ICB), Madrid (Spain), 2013, 1-6The variation of dynamic signatures with time is analysed for the first time using the Kinematic Theory, following a general, consistent and fully reproducible protocol. Experiments are carried out on a new long-term database captured in 6 sessions uniformly distributed over a 15 month time span, under almost identical conditions. Signatures are represented with the Sigma Log-Normal model, which takes into account the effects of body ageing closely related to handwriting, such as neuromuscular response times. After studying the evolution of signatures with time, an analysis on age groups based on the model parameters is carried out.This work has been partially supported by projects Contexts (S2009/TIC-1485) from CAM, Bio-Challenge (TEC2009-11186) and Bio-Shield (TEC2012-34881) from Spanish MINECO, Guardia Civil, Cátedra UAM-Telefónica and grant RGPIN-915 from NSERC Canada

    Iris image reconstruction from binary templates: An efficient probabilistic approach based on genetic algorithms

    Full text link
    This is the author’s version of a work that was accepted for publication in Computer Vision and Image Understanding. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Computer Vision and Image Understanding, 117, 10, (2013) DOI: 10.1016/j.cviu.2013.06.003A binary iriscode is a very compact representation of an iris image. For a long time it was assumed that the iriscode did not contain enough information to allow for the reconstruction of the original iris. The present work proposes a novel probabilistic approach based on genetic algorithms to reconstruct iris images from binary templates and analyzes the similarity between the reconstructed synthetic iris image and the original one. The performance of the reconstruction technique is assessed by empirically estimating the probability of successfully matching the synthesized iris image against its true counterpart using a commercial matcher. The experimental results indicate that the reconstructed images look reasonably realistic. While a human expert may not be easily deceived by them, they can successfully deceive a commercial matcher. Furthermore, since the proposed methodology is able to synthesize multiple iris images from a single iriscode, it has other potential applications including privacy enhancement of iris-based systems.This work has been partially supported by projects Contexts (S2009/TIC-1485) from CAM, Bio-Challenge (TEC2009-11186) and Bio-Shield (TEC2012-34881) from Spanish MECD, TABULA RASA (FP7-ICT-257289) and BEAT (FP7-SEC-284989) from EU, and Cátedra UAM-Telefónica
    corecore